MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A # NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A152 026 OTIC FILE COPY ## **THESIS** A MATHEMATICAL MODEL FOR CALCULATING DETECTION PROBABILITY OF A DIFFUSION TARGET by Mucahit Sislioglu September 1984 Thesis Advisor: J. N. Eagle Approved for public release; distribution unlimited. 85 03 18 115 | REPORT DOCUMENTAT | ION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------| | . REPORT NUMBER | AD-A15 | 3. RESIDENT'S CATALOG NUMBER | | A Mathematical Model for Detection Probability of Target | Calculating<br>a Diffusion | 5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; September 1984 6. PERFORMING ORG. REPORT NUMBER | | Mucahit Sislioglu | | 8. CONTRACT OR GRANT NUMBER(*) | | Naval Postgraduate School Monterey, California 93 | | 10. PROGRAM ELEMENT PROJECT, TASK<br>AREA & WORK UNIT NUMBERS | | Naval Postgraduate School Monterey, California 93 | | 12. REPORT DATE September 1984 13. NUMBER OF PAGES 69 | | . MONITORING AGENCY NAME & ADDRESS(II di. | iterent trom Controlling Offi | 15. SECURITY CLASS. (of this report) 15. DECLASSIFICATION DOWNGRADING SCHEDULE | | Approved for public rele | | | | SUPPLEMENTARY NOTES | | | | NEY WORDS (Continue on reverse eide if necesse) Diffusion target, randon | | | | matical model to predict which moves randomly, as model. This model assume which has a "cookie-cutto construct this model" | ve of this stu<br>t the detectio<br>ccording to a<br>mes that there<br>ter" sensor wi<br>, a Monte Carl | dy is to derive a mathe-<br>n probability of a target<br>two-dimensional diffusion<br>is a stationary searcher<br>th radius R. In order | Block 20 Contd. that this model can be used asymptotically to predict an upper bound detection probability of an "equivalent" random tour target. target. Approved for public release; distribution unlimited. ### A Mathematical Model for Calculating Detection Probability of a Diffusion Target bу Mucahit Sislioglu Lieutenant Junior Grade, Turkish Navy B.S., Turkish Naval Academy, 1978 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH from the NAVAL POSTGRADUATE SCHOOL September 1984 | Author: | - Micalif light Müghtit Sislioglu | |-------------|-------------------------------------------------------------| | Approved by | : Eagle, Thesis Advisor | | | Sumo Strubert. B.O. Shubert, Second Reader | | | Hall Washbrum | | | Department of Operations Research | | | Kneale T. Marshall, Dean of Information and Policy Sciences | ### **ABSTRACT** The primary objective of this study is to derive a mathematical model to predict the detection probability of a target which moves randomly, according to a two-dimensional diffusion model. This model assumes that there is a stationary searcher which has a "cookie-cutter" sensor with radius R. In order to construct this model, a Monte Carlo simulation program is used to generate detection probabilities. It is demonstrated that this model can be used asymptotically to predict an upper bound detection probability of an "equivalent" random tour target. ### TABLE OF CONTENTS | I. | DESC | RIP | TI: | ON | 01 | T | ΗE | D | IFF | US | SI | CN | M | 01 | Ξ | L | | | | | | • | | | 9 | |------|------|-----|-----|------|------|------|-----|----|-----|------|-----|----|----|-----|-----|----|----|----|------|-----|---|---|---|---|----| | | Α. | INT | RO. | DU ( | CT : | ICN | | • | | • | | | | | , | | | | | | | | • | • | 9 | | | В. | DES | CR: | IP: | TIC | ON ( | ΟF | D | IF | : US | SI | ON | M | 05 | Ε | L | | | • | | | | | | 9 | | | | 1. | | | | ear | | | | | | | | | | | | | | | | | | | | | | | 2. | T | he | Ta | argo | et | S | tar | ti | i n | g | Po | si | Lt | io | n | | | | | | | | 9 | | | | 3. | | | | n 0: | | | | | | - | | | | | | | | | | | | | | | | | 4. | | | | tio | | | | | | | | | | | | | | | | | | | | | | С. | DIF | FU. | SI | ON | SI | MUI | LA | TIC | O N | M | OD | EL | ( | ( D | ΙF | SI | M) | | | | | | | 10 | | | | 1. | | | | s. | | | | | | | | | | | | | | | | | | | | | | | 2. | | _ | | ion: | | | | | | | | | | | | | | | | | | | | | | | 3. | | | | t. | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | II. | CONN | ECI | IO: | N . | BE: | IWE: | EΝ | R | ANI | 00 | 1 | CT | UR | | l N | D | DI | FF | TUS | SIC | N | | | | | | | MODE | EL | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 16 | | | A. | DES | CR | IP: | TIC | ON ( | ٥F | E | ANI | 00 | M | TO | UR | ñ | 10 | DΕ | L | • | • | • | • | • | • | • | 16 | | | B. | CON | ΝE | CT: | 10! | N B | ET | ΙE | ΕN | RI | N | DO | M | TC | U C | F. | AN | D | | | | | | | | | | | DIF | FU | SI | ON | MO | DE | LS | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 17 | | III. | ESTA | BLI | SH | ME | ΝT | OF | TE | iΕ | A I | CAI | LY | ΤI | CA | L | ĸ | מס | ΕI | | • | | | • | | | 23 | | | Α. | ASS | | | | | | | • | | | | | | | | | | | | | | | | | | | в. | CLA | | | | | | | | | | | | | | | | | | | | | | | | | | C. | CON | | | | | | | | | | | | | | | | | | | | | | | | | | | 1. | | | | lel | | | | | | | | | | | | | | | | | | | | | | | . • | | | | | | | | | | | | | | | | | | | | | | | | | | _ | 2. | | | | del | | | • | | | | | | | | | | | | | | | | | | | D. | VER | | | | | | | | | | | | | | | | | | | | | | | | | | | 1. | | | | sio | | | | | | | | | | | | | | | | • | • | • | 42 | | | | 2. | S | en: | si | tiv: | ity | Y | Ana | 11 | y s | is | £ | o I | : | Ιn | ₫€ | рe | en i | len | t | | | | | | | | | 4 | ar. | ial | ble | s | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 43 | | | | 3. | F | in | al | ۷e: | rif | Εi | cat | tio | o n | | | | | _ | | | | | | | | | 45 | | IV. | PROB | ABI. | LI | ST I | C | A! | NAI | .Y S | IS | 0 | F | ΤH | E | CM | נכי | ΞL | | • | • | • | • | • | • | • | 52 | |---------|-------|------|------------|-------------|------------|-----|-------|------|-----|----|----|----|----|----|-----|-----|-----|-----|------|-----|-----|---|---|---|------------| | | A. | CUM | UL | ATI | <b>v</b> : | E i | DEI | EC | TI | ON | P | Ch | BA | BI | L | ΙΊ | Y | FÜ | J 11 | CI | IO! | 1 | • | | 52 | | | В. | DET | EC | TIC | N | Pl | ROE | A B | BIL | ΙT | Y | DΕ | NS | IT | Y | F | Ul | NC: | :I | N C | • | • | • | • | 53 | | | С. | EXP | EC | TEI | ) ] | FI | RSI | . D | ET | ΞC | ΤI | CN | r | KI | E | | | • | • | • | • | • | • | • | 54 | | | D. | CON | DΙ | TIC | N | AL | DE | ETE | CT | ΙO | N | 28 | ОБ | ΑĐ | ΙI | LI | T | ľ | | | | | | | | | | | FUN | CT | ION | S | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 55 | | ν. | THE | RES | UL | TS | A | ND | A E | PL | IC | ΑT | IC | NS | Э | F | Τi | ΙE | 1 | 101 | E | Ĺ | | | | • | 53 | | | A. | EXP | EC | TED | ) ] | DE: | TEC | TI | ON | T | ΙM | Ε | FΟ | R | R Z | N A | D ( | MC | T | υC | R | | | | | | | | MOD | ΕL | • | | | | • | • | • | • | • | • | • | | , | | • | • | • | • | • | • | • | <b>5</b> 9 | | | В. | ONE | <b>d</b> – | IME | N: | SI | O N A | L | DI | FF | បន | IO | N | CM | DI | ΞL | | | • | • | • | • | • | • | 59 | | | С. | APP | LI | CAI | ΙŒ | C N | 5 ( | ÞΓ | ΤH | E | ИΟ | DE | L | • | • | , | • | • | • | • | • | • | • | • | 60 | | APPENDI | X A: | D | ΙF | SI | [ ( | COI | MPi | JT E | R | ΡŖ | OG | RA | M | • | | 1 | • | • | • | | • | • | • | • | 63 | | LIST CE | REF | ERE | NC | ES | • | • • | | • | • | • | • | • | • | | • | , | • | • | • | • | | • | • | • | 63 | | TRITTAL | . DTS | TRT | B II | <b>ም</b> ፐር | N | Τ. | TST | | _ | _ | _ | _ | _ | _ | | | _ | | | _ | _ | | | _ | 69 | ### LIST OF TABLES | I. | Exponential Curve Fitting for Different | |------|--------------------------------------------------------| | | Diffusion Constants R=10 nm A=10000 nm <sup>2</sup> 30 | | II. | Exponential CUrve Fitting For Different Area | | | Sizes R=10 nm D=100 nm2/hr | | III. | Exponential Curve Fitting For Different | | | Detection Radiuses D=100 nm²/hr A=10000 nm² 39 | ### LIST OF FIGURES | 1.1 | P(t) (Probability of Det. by Time t) for | |------|-----------------------------------------------| | | Various Time Increments | | 1.2 | Diffusion Model | | 2.1 | Comparision of Diffusion and Equivalent | | | Random Tour Models | | 3.1 | Example Plot of P(t) 2 | | 3.2 | P(t) Plotted on Logarithmic Scale 2 | | 3.3 | P(t) for 5 Diffusion Constants 2 | | 3.4 | Best Fit & vs. Diffusion Constant 3 | | 3.5 | P(t) for 5 Different Area Value | | 3.6 | Best Fit $\beta$ vs. to Area | | 3.7 | P(t) for 5 Radius Value | | 3.8 | Best Fit $\beta$ vs. Radius | | 3.9 | Observed Values of K | | 3.10 | Sensitivity Analysis for A, D and R 4 | | 3.11 | Model Verification Results (D Varies) 4 | | 3.12 | Model Verification Results (A Varies) 4 | | 3.13 | Model Verification Results (R Varies) 4 | | 3.14 | Instantaneous Detection Rate (8) vs. Time t 5 | | 4.1 | Expected First Detection Time | | 4.2 | Comparison of $F(t)$ and $F_0(t)$ | | 5.1 | One-Dimensional Diffusion Model 6 | ### I. DESCRIPTION OF THE DIFFUSION MODEL ### A. INTRODUCTION The main objective of this thesis is to find and test an experimental mathematical model which predicts the propability of detecting a two-dimensional target by a stationary searcher. This model will be shown to provide an upper bound for the probability of detection by a stationary searcher of a target conducting a "random tour" [Ref. 1] ### B. DESCRIPTION OF DIFFUSION MODEL ### 1. The Searcher Location The searcher is assumed to be located in the center of a square search region of area A. This location is held fixed during the search period. The searcher has a detection capability over a disk of radius R. The detection probability of a target inside of this disk is 1 and outside is 0. The searcher thus has a "cookie-cutter" sensor with detection range R. [Ref. 2] ### 2. The Target Starting Position The target's starting position is uniformly distributed over the square search region A. ### 3. Motion of the Target In our diffusion model, the target moves randomly over the area $\,\Lambda$ as a diffusing particle which reflects off the area boundaries. The diffusion constant is 0, which has dimensions of area per unit of time. In any time interval of length $\,\Delta$ t that does not contain a boundary reflection, components of the target's position on the X and Y axes suffer increments which are independent of all previous increments and which are each distributed normally with mean 0 and variance $D\Delta t$ . Still ignoring boundary effects, the diffusion assumption results in the target's location at time t naving a circular bivariate normal probability distribution with mean of the starting position and variance of Dt. Thus the probability density of the target's location at time t is $$f(x,y,t) = \frac{1}{2\pi Dt} \exp\left(\frac{(x-u_x)^2 + (y-u_y)^2}{2Dt}\right)$$ (1.1) where $(U_X, U_Y)$ is the target's starting position. Adding the effects of boundary reflection significantly complicates the calculation of f(x, y, t) and leads to the necessity of using simulation to attack this problem. ### 4. <u>Detection</u> Detection occurs whenever the target enters the searcher circular detection disk which has a radius R. ### C. DIFFUSION SIMULATION MODEL (DIFSIM) A Monte Carlo simulation computer model (DIFSIM) is used to generate detection probabilities for this diffusion model. This program is written in FORTRAN and designed for use at the Naval Postgraduate School(NPGS). It uses the new version of the NP3S Random Number Generator Package, called LLRANDOMII in order to generate Uniform and Normal random numbers. ### 1. Inputs - · Area size, A, in square nautical miles. - Diffusion constant, D, in square nautical miles per hour. - · Padius of detection lisk, R, in nautical miles. - Number of replications. - Detection period as an hour. - Time increment, $\Delta t$ , for each discrete step in minutes. ### 2. Functioning of Program The initial target position is selected from a bivariate uniform distribution over the search region A. Subsequent target positions are determined by a discrete approximation of the diffusion. We make the following definitions. X=x component of current location Y=y component of current location X'=x component of new location at the end of time increment $\Delta t$ Y'=y component of new location at the end of time increment $\Delta t$ Then, $$X' = X + \Theta_{X} (D\Delta t)^{1/2}$$ $$Y' = Y + \Theta_{Y} (D\Delta t)^{1/2}$$ where $\Theta_{i}$ and $\Theta_{j}$ are drawn independently from a standard normal distribution. In this model a 5 minute $\Delta t$ is used. Different time increments, varying from 1 minute up to 15 minutes, have been tested and 5 minutes has been accepted as a good value. For smaller time increments the simulation program took too long in computer execution time. As shown in Figure 1.1 there is no significant difference in probability curves between 5 minute increments and smaller time increments. P(t) (Probability of Det. by Time t) for Various Time Increments. Figure 1.1 When the target encounters a boundary, a reflection is made to keep the target inside the search area. The target's Y' position after a reflection is given as follows: $$Y' < 0 => Y' becomes -Y'$$ where a is the length of a side of the square search area A. The target reflects in the X direction in a similar manner. Detection occurs whenever the target enters the detection disk. This event can be defined analytically as follows: $$(X-\frac{\alpha}{2})^2+(Y-\frac{\alpha}{2})^2\leq \mathbb{R}^2$$ ### 3. Cutput For each time t, the simulation output is the ratio $N_{\Omega}/N_{\tau}$ where $N_{O}$ =number of replications giving a detection by time t, $N_{T}$ =total number of monte Carlo Replications used in the simulation. Figure 1.2 Diffusion Model. ### II. CONNECTION BETWEEN RANDOM TOUR AND DIFFUSION MODEL ### A. DESCRIPTION OF RANDOM FOUR MODEL In the random tour model considered here, the target is assumed to move at a constant speed and to make course changes at random times. Each new course is drawn from uniform distribution on $[0,2\Pi]$ . The lengths of the time between course changes is exponentially distributed with mean $1/\Lambda$ . An analytic expression for the probability density of the target's position after a random tour of length t was derived in [Ref. 1] Given the target's initial position at the origin of a two-dimensional coordinate system, this expression is $$g(x,y,t) = \frac{1}{2\Pi(\sqrt{t})^2} \left[ \frac{\lambda t}{\sqrt{1-g^2}} \exp(-\lambda t(1-\sqrt{1-g^2})) + \exp^{-\lambda t}(\delta(g-1)) \right]$$ (2.1) where V=target speed (nautical mile in per hour) λ=course change rate (hrs ) t=time (hrs) $$S^2 = \frac{x^2 + y^2}{(\sqrt{t})^2} - \frac{x^2 + y^2}{(\sqrt{t})^2}$$ The Dirac $\S$ \_function component of g(x,y,t) arises from the fact that with probability $e^{-\lambda t}$ the target does not finish the first step by time t. In other words, the target makes no course change through time t. Therefore, its probability mass is concentrated on the boundary of a disk of radius vt and centered at the origin. ### B. CONNECTION BETWEEN EAUDOM TOUR AND DIFFUSION MODELS Let I denote the ruding to ansemble to they torive the origin at time t. Then The expression for $E[R^2]$ for the random tour model was derived in [Ref. 3] as follows: $$\mathbb{E}[\hat{x}^2] = \iint (x^2 + y^2) \ g(x, y, t) \ dxdy$$ (2.2) $0 \le x^2 + y^2 \le (vt)^2$ Substituting (2.1) into (2.2) and transforming to polar coordinates, we obtain $$E[R^{2}] = \iint_{0}^{2\pi} \frac{e^{-\lambda t}}{2\pi (Vt)^{2}} \left\{ \delta\left(\frac{r}{Vt} - 1\right) + \frac{\lambda t}{\sqrt{1 - \left(\frac{r}{Vt}\right)^{2}}} \exp\left(\lambda t \sqrt{1 - \left(\frac{r}{Vt}\right)^{2}}\right) \right\} dr dr$$ Setting x=r/vt, we have $$E[R^{2}] = e^{-\lambda t} (Vt)^{2} \int_{0}^{t} x^{3} \left\{ \delta(x-1) + \frac{\lambda t}{1 - \left(\frac{r}{Vt}\right)^{2}} \exp\left(\lambda t \sqrt{1 - x^{2}}\right) \right\} dx$$ $$= e^{-\lambda t} (Vt)^{2} \left\{ 1 + \lambda t \int_{0}^{t} \frac{x^{3}}{1 - x^{2}} \exp\left(\lambda t \sqrt{1 - x^{2}}\right) \right\} dx \qquad (2.3)$$ To resident the integration in (2.3), we set $u=\sqrt{1-x^2}$ . Thus $$\lambda t \int \frac{1}{1-x^2} e^{xy} \left(\lambda t \sqrt{1-x^2}\right) dx$$ $$= \lambda t \int \frac{1}{(1-u^2)} e^{xy} \left(\lambda t u\right) du$$ $$= e^{\lambda t} -1 - \frac{1}{(\lambda t)^2} \int_0^{x^2} e^{y} dy$$ $$= \frac{2e^{\lambda t}}{(\lambda t)^2} (\lambda t -1 + e^{-\lambda t}) - 1 \qquad (2.4)$$ From (2.3) and (2.4) we then have $$E[R^{2}] = 2 \frac{v^{2}}{\lambda^{2}} (\lambda t - 1 + e^{-\lambda t})$$ $$= \frac{2v^{2}t}{\lambda} \left(1 - \frac{1 - e^{-\lambda t}}{\lambda t}\right) \qquad (2.5)$$ In the calculation of $E[R^2]$ for diffusion model with diffusion constant D, the target's initial position is assumed to be at the origin of a two-dimensional coordinate system. We have $$E[R^2] = E[X^2 + Y^2] = E[X^2] + E[Y^2]$$ (2.6) Since X and Y are independent and uncorrelated, they have normal marginal distributions. So, X~N(0,Dt) Y~N(0,Dt) and $E[X^2]=Var[X]+(E[X])^2=Dt+0=Dt$ E[ Y2]=Var[ Y]+ (E[ Y]) 2=Dt+0=Dt If we substitute these $E[X^2]$ and $E[Y^2]$ values into (2.6), we get $$E[R^2] = E[X^2] + E[Y^2] = Dt + Dt = 2Dt$$ (2.7) As described in [Ref. 3] for the random tour model, as t goes to infinity the Central Limit Theorem requires that g(x,y,t) becomes asymptotically circular bivariate normal with mean p=0 and variance $\sigma^2=Vt/h$ . This result can be obtained by using the formula (2.5) and letting t go to infinity. $$\lim_{t \to \infty} E[R^2] = \lim_{t \to \infty} \frac{2V^2t}{h} \left(1 - \frac{1 - e^{-ht}}{ht}\right) = \frac{2V^2t}{h}$$ (2.8) By comparing the equations (2.7) and (2.8), it is seen that as t becomes large, a random tour can be approximated by a diffusion with diffusion constant $$D = \frac{\sqrt{2}}{\lambda}$$ (2.9) To examine the relationship between a random tour and its "equivalent" diffusion, two simulations were used. Example results of these two simulation programs, DIFSIM and PASS are displayed in Figure 2.1. Both programs are Monte Carlo search simulations. For PASS (Passive Acoustic Submarine Simulation), [Ref. 4] the target motion model is a random tour. In DIFSIM (Diffusion Simulation), the target moves as a diffusing particle. In both cases, the searcher is stationary at the center of a 100 nm x 100 nm search area and has a cookie\_cutter sensor with detection range 15nm. The target reflects out the area boundaries. The initial target position was selected uniformly over the search area, and each replication of the simulation was allowed to continue until the target moved within distance 15 nm of the searcher. To generate the results shown in Figure 2.1, the following 5 different pairs of $\lambda$ and V are used as a rate of course change and speed of target in the PASS simulation model. $$\begin{pmatrix} v \\ \lambda \end{pmatrix} = \begin{pmatrix} 5.0 \\ 0.25 \end{pmatrix}, \begin{pmatrix} 10.0 \\ 1.0 \end{pmatrix}, \begin{pmatrix} 15.0 \\ 2.25 \end{pmatrix}, \begin{pmatrix} 20.0 \\ 4.0 \end{pmatrix}, \begin{pmatrix} 25.0 \\ 0.25 \end{pmatrix} \begin{pmatrix} r.m/hr \\ 1/hr \end{pmatrix}$$ If we use equation (2.9), we may get an "equivalent" diffusion constant 100 nm<sup>2</sup>/hr, by using each different ( $\lambda$ , $\nu$ ) pair. Thus 100 nm<sup>2</sup>/hr is used as a diffusion constant in the DIFSIM in order to get an "equivalent" diffusion model. As demonstrated, detection probabilities are asymptotically very close to each other as t increases. But during the early search hours, detection probabilities for a diffusion model are higher than the probabilities which are generated by the random tour model. If we recall the the equations (2.5) and (2.8) we will see that $$E[R^2] \leq -\frac{2\sqrt{2}t}{\lambda} = 2Dt$$ Thus the approximation of $E[R^2]$ for the random tour model by using the diffusion model always leads to an OVERESTIMATE of $E[R^2]$ . In the diffusion model we may expect that the target will move a greater distance from the origin than does the target in the "equivalent" random tour model. It is therefore reasonable to expect that the diffusing target will encounter a stationary searcher more quickly than will a target conducting an "equivalent" random tour. This conjecture has been supported by further simulation testing; also supported is the fact that the two processes are asymptotically identical. An experimental analytical model will be constructed for the diffusion model in the next section. Comparision of Diffusion and Equivalent Random Tour Models. Figure 2.1 ### III. ESTABLISHMENT OF THE ANALYTICAL MODEL In this chapter, and with simulation results from DIFSIM, an experimental analytical model will be constructed for predicting the probability of a diffusion target entering a stationary disk by some time t. ### A. ASSUMPTIONS The following assumptions are used in our model - •The searcher is fixed at the center of a square search region of area A. - •The searcher has a detection capability over a disk of radius R with a detection probability of 1 within the disk and 0 outside. (i.e, a cookie-cutter letector). - •The target's starting position is uniformly distributed over a search region A. - The target moves randomly over the area A as a diffusion particle with diffusion constant D. - •The target reflects off the area boundaries. - •A target can be detected only once by the searcher ### B. CLASSIFICATION OF THE VARIABLES The variables in our model are, - •First detection probability, P. - •Search area, A (nm2). - •Searcher detection disk radius, R (nm). - •Target diffusion constant, D (nm2/hr). •Time, t (hr). The first detection probability, P, is the dependent variable. The remaining variables A, E, D and t are independent. That is. P = f(A,R,D,t) ### C. CONSTRUCTION OF THE MODEL Figure 3.1 shows four plots of the probability of a target detection by time t as estimated by the Monte Carlo simulation DIFSIM. If we look at these curves, we will observe that all of them have an increasing trand and they approach 1 asymptotically. It also appears as if the second derivative must be negative everywhere. Figure 3.2 plots 1 minus the same data on a log scale. The fact that these plots are very nearly linear suggests the following functional form P(t). $$P(t) = 1 - \alpha e^{-\beta t}$$ (3.1) where $\alpha$ and $\beta$ are determined by the problem parameters R, A and D. After conducting 23 separate simulations with different values of R,A and D, the author is convinced that the form of P(t) is approximately exponential. This thesis attempts to establish values of $\alpha$ and $\beta$ , as function of R,A and D, to allow equation (3.1) to be a reasonable estimate. Figure 3.1 Example Plot of P(t). Figure 3.2 (-P(t) Plotted on Logarithmic Scale. ### 1. Submodel for & In our model, we know that the target starting position is uniformly distributed over the search area A, and the searcher has a detection capability over a disk which covers an area $\Omega R^2$ with probability 1. So, we may expect that at the beginning of the search, i.e., when t=0, detection probability will be equal to $\Omega R^2/A$ . If we substitute t=0 in equation (3.1), we get $$P(0) = 1 - \infty$$ Then $$F(t=0) = \frac{T R^2}{A} = 1 - \alpha \qquad (3.2)$$ which implies that $$\alpha = 1 - \frac{T R^2}{A}$$ (3.3) ### 2. Submodel for B This submodel will include all independent variables R,D,A and t, and will therefore be more complex. We will study each independent variable separately in order to simplify the problem (We will change one variable while holding the others fixed.) The relationship between $\beta$ and these variables will be estimated. Eventually we will combine these submodels for a final submodel. a. The Relationship Between Diffusing Constant 2 and $\boldsymbol{\beta}$ For this case, area size A and radius R were held fixed at 10000 nm<sup>2</sup> 10 nm. respectively. Diffusion constant D was varied between 20 nm<sup>2</sup>/nr and 300 nm<sup>2</sup>/hr The simulation results are displayed in Figures 3.3. By using the least squares estimation method on ln[1-P(t)] data values, a best fit $\beta$ was obtained for each diffusion constant D. These $\beta$ values are plotted against the corresponding D values in Figure 3.4. They fall approximately on a straight line. Again, by using the least square estimation method, the following linear equation was obtained $\beta = 0.00303 + 0.000205 D$ (3.4) $\beta \approx 0.000205 D$ G Figure 3.3 P(t) for 5 Diffusion Constants. TABLE I # Exponential Curve Fitting for Different Diffusion Constants R=10 nm A=10000 nm<sup>2</sup> | Diffusion<br>Constant (nm2/hr) | Theoretical & Value (1-#K2/A) | Exponential Least Square Curve Fitting For $\alpha e^- \beta$ | Estimated<br>8 <u>Value</u> | |--------------------------------|-------------------------------|---------------------------------------------------------------|-----------------------------| | 20 | 0.5686 | 0.940 EXP{-0.00503 T} | 0.00503 | | 0 17 | 0.9686 | 0.937 EXP [-0.00989 T] | 0.00989 | | 09 | 0.9686 | 0.912 EXP [-0.01523 T] | 0.01523 | | 80 | 9896*0 | 0.915 EXP {-0.02086 T} | 0.02086 | | 100 | 0.5686 | 0.981 EXP (-0.02615 T) | 0.02615 | | 120 | 9896.0 | 0.902 EXP (-0.02711 T) | 0.02711 | | 140 | 9896.0 | 0.897 EXP [-0.03341 T] | 0.03341 | | 160 | 0.3686 | 0.931 EXP[-0,03728 T] | 0.03728 | | 180 | 9636 | 0.917 EXP{-0.03953 T} | 0.03953 | | 200 | 0.5686 | 0.915 EXP (-0.04559 T) | 0.04559 | | 220 | 9896.0 | 0.946 EXP{-0.05026 T} | 0.05026 | | 240 | 9895.0 | 0.890 EXP (-0.04986 T) | 0.04986 | | 260 | 9896.0 | 0.909 EXP{-0.05583 T} | 0.05583 | | 280 | 0.5686 | 0.855 EXP (-0.06325 T) | 0.06325 | | 300 | 9686 | 0.850 EXP(-0.06239 T) | 0.06239 | Figure 3.4 Best Fit $\beta$ vs. Diffusion Constant. ### t. The Relationship Between Area Size A and $\beta$ This time the diffusion constant D and detection radius R were held at 100 nm²/hr and 10 nm respectively. The area size A was varied between 1000nm² and 20000 nm². The simulation results and the least square estimation results for the log transformed data values are displayed in Figure 3.5 and and Table II Figure 3.6 shows a plot of the best fit $\beta$ against area size A. These points fit very closely with the power function $\beta = 0.77A^{-1.49}$ (A least squares procedure on the log transformed data was used to determine the values 0.77 and -1.49). To achieve more natural final units, the model is modified slightly as follows: $$\beta = 0.77 \, \text{A}^{-1.5} \tag{3.5}$$ Ĉ Figure 3.5 P(t) for 5 Different Area Value. TABLE II ## Exponential CUrve Fitting For Different Area Sizes R=10 nm D=100 nm2/hr | Area<br><u>Size (nm²</u> ) | Theoretical $\alpha$ | Exponential Least Square Curve Fitting for A.A. | Estimated<br>B <u>Vaiue</u> | |----------------------------|----------------------|-------------------------------------------------|-----------------------------| | 1000 | 989 °C | 0.651 EXP{-0.91867 T} | 0.91867 | | 2000 | 0.843 | 0.831 EXP[-0.26581 T] | 0.26581 | | 000 <del>h</del> | 0.922 | 0.991 EXP{-0.09295 T} | 0.09295 | | 0009 | 8 76 0 | 0.858 EXP{-0.04521 T} | 0.04521 | | 8 3 0 0 | 0.961 | 0.901 EXP{-0.03163 T} | 0.03163 | | 10000 | 896 *0 | 0.939 EXP{-0.02469 T} | 0.02469 | | 12000 | η <b>.</b> 974 | 0.941 EXP [-0.01922 T] | 0.01922 | | 14 0 0 0 | 0.978 | 0.951 EXP [-0.01537 T] | 0.01537 | | 16000 | 0.980 | 0.965 EXP[-0.01361 T] | 0.01361 | | 16000 | 0.983 | 0.984 EXP[-0.01183 T] | 0.01183 | | 20 3 00 | 0.984 | 0.587 EXP[-0.01027 T] | 0.01027 | Ē Figure 3.6 Best Fit $\beta$ Vs. to Area. c. The Relationship Between Detection Radius R and $oldsymbol{\beta}$ Again, the same procedures were applied for this case. R was varied between 1 and 30 nm, while D and A were held fixed at 100 nm<sup>2</sup>/hr and10000 nm<sup>2</sup> respectively. The simulation results and least square estimation results are displayed in Figure 3.7 and Table III. In Figure 3.8, the scatter plot of estimated $\beta$ values shows a linear relationship between R and $\beta$ . Least square estimation for this line is $\beta = -0.00135 + 0.00278R$ $\beta \approx 0.00278R$ (3.6) Ē Figure 3.7 P(t) for 5 Radius Value. TABLE III # Exponential Curve Fitting For Different etection Radiuses D=100 nm2/hr A=10000 nm2 | Detection<br>Radius (nm) | Theoretical $\alpha$ | Exponential Least Square Curve Fitting For Aer | Estimated<br>8 <u>Value</u> | |--------------------------|----------------------|------------------------------------------------|-----------------------------| | 1.0 | 666 • 0 | 0.992 EXP{-0.00263 T} | 0.00263 | | 2.5 | 0.998 | 0.978 EXP{-0.00862 T} | 0.00862 | | 5.0 | 0.992 | 0.967 EXP {-0.01449 T} | 0.01449 | | 10.0 | 0.968 | 0.934 EXP (-0.02462 T) | 0.02462 | | 15.0 | 0.929 | 0.852 EXP{-0.03361 T} | 0.03361 | | 20.0 | 0.874 | 0.845 EXP{-0.05266 T} | 0.05260 | | 25.0 | J. 804 | 0.770 EXP {-0.07443 T} | 0.07443 | | 30.0 | 0,717 | 0.445 EXP (-0.08255 T) | 0.08259 | Figure 3.8 Best Fit $\beta$ vs. Radius. We can summarize these observations as follows: where "a" means "is proportional to" which suggests that $$\beta = \kappa \frac{RD}{A^{1.5}} \tag{3.7}$$ for the proper value of K. To estimate K is the final model building step. ### d. Estimation of the Coefficient K $\label{eq:weak_problem} \mbox{We can calculate the K value for each simulation} \\ \mbox{with the expression}$ $$K = \frac{\beta A^{1.5}}{\beta D}$$ (3.9) where $\beta$ is the "best fit" value for that simulation run. Then with these sample % values we may find best overall estimate. In addition to 56 simulations already completed, 25 additional simulations were conducted to produce a total of 81 sample K values. The histogram and the statistical table values for this data are displayed in Figure 3.9. Figure 3.9 Observed Values of K. If we recall the equation (3,1), (3.3) and (3.7) $$P(t) = 1 - ie^{-t}$$ $$\alpha = 1 - \frac{\pi R^{2}}{\Lambda}$$ $$\beta = K \frac{RD}{A^{1.5}}$$ Substituting these $\alpha$ and $\beta$ values in equation (3.1), we derived our final analytical model for first detection probabilities as follows $$P(t) = 1 - (1 - \frac{\pi R^2}{A}) e^{-K} \frac{RD}{A^{1.5}} t$$ (3.9) where P(t) refers to the probability of first detection occurs on or before time t. ### D. VERIFICATION OF THE MODEL ### 1. <u>Dimension Analysis</u> From equation (3.9) we see that must be dimensionless. This implies that the coefficient K must be dimensionless. (If we had set the power of A to 1.49 versus 1.5, then the dimension of K would be nm<sup>0.2</sup>, not a natural unit.) ### 2. Sensitivity Analysis for Independent Variables If we hold fixed all independent variables R.D.t and change the area size A, we will observe that as we increase the A, the probability of detection decreases and vice versa. This result is demonstrated in Figure 3.10. As we increase the size of the search area, more area will be available for the target to escape from the searcher. Therefore we may expect lower detection probabilities for larger search area sizes. A similar sensitivity analysis is applied for the other independent variables R,D and t. If we look at the results displayed in Figure 3.10, we may observe that as we increase these variables, the detection probabilities increase simultaneously. These results seem reasonable, because as we increase the search time or detection radius, we may have more chanses to detect the target. Also an increase in the D value means that the target will travel more distance during any time interval and will thus be more likely to enter the detection disk. Figure 3.10 Sensitivity Analysis for A, D and R. ### 3. Final Verification There was no actual data available from real life observations. Therefore, the output of DIFSIM is used for final verification of the model. For this purpose, combinations of the following independent variables were used both in our analytical model and as input to DIFSIM. D= 40, 80, 140, 200 Nm \*2/Hr R= 2.5, 10, 20, 25 Nm A= 4000, 8000, 12000, 16000 Nm \*2 The outputs are displayed in Figure 3.11, 3.12, 3.13. It is observed that the simulation and model probabilities are generally very close to each other. Only during early search hours do the simulation curves sometimes go above the model curve. This means that our model predicts fewer detection than the diffusion simulation model during the early search hours. Since this difference is at maximum .03 or .04, we conclude that the model provides a good fit, which gets better for larger time t. For small t, the model appears to underestimate the propability of detection. Figure 3.11 Model Verification Results (D Varies). Figure 3.12 Model Verification Results (A Varies). Figure 3.13 Model Verification Pesults (R Varies). For the rodel presented here, the instantaneous sate $\varepsilon = +\infty$ and in the center of $$y = K - \frac{RD}{A^{1s}}$$ The fact that the DIFSIM probability of detection by time to generally exceeds that predicted by the model organists that the instantaneous probability of detection produced by DIFSIM exceeds (at least in early hours of the simulation). To test this hypothesis, DIFSIM was run with the parameters D=100 nm2/hr E=10 nm A=10000 nm2 Then for each 5 hour period between 0 and 80 hours, the least squares best fit was obtained. (That is, the best fitting $$1 - (1 - \frac{\pi R^2}{A}) e^{-\beta t}$$ was calculated). These values are plotted in Figure 3.14, and appear to approach from above the model value of $$\frac{24.7 \times 100 \times 10}{10000} = .0247$$ Thus, in this case at least, it appears that the instantaneous probability of detection starts at some high value and decreases asymptotically to a steady state value given by the model presented here. This observation remains to be proved in general. Instantancous Detection Rate (/3) vs. Time t. 1.6 ure 3.14 ### IV. PROBABILISTIC ANALYSIS OF THE MODEL ### A. CULULATIVE DETECTION PROPABILITY FUNCTION Since the following properties for general constative probability function hold for our mathematical model, equation (3.9), we may aroune that this model also represents a cumulative density function (cdf) for first detection time t. These properties are 1. $$\lim F(t) = 1$$ t-> $$\infty$$ Lim F(t) = Lim $\left[1 - \left(1 - \frac{\int R^2}{A}\right)e^{-\kappa \frac{RD}{A^{r}}t}\right]$ t-> $\infty$ t $\rightarrow \infty$ = $1 - \left(1 - \frac{\int R^2}{A}\right)$ . $0 = 1$ ### 2.F(t) is a nondecreasing function If we take the the first derivate of F(t) with respect to t, we get $$\frac{dF(t)}{dt} = \left(K - \frac{RD}{A^{1.5}}\right) \left(1 - \frac{\pi R^2}{A}\right) e^{-K - \frac{RD}{A^{1.5}}}$$ since this equation always has nonnegative values, we may assume that F(t) is a nondecreasing function. ### 3.F(t) is a continuous function. Therefore we may define cdf as following. $$I(t) = P(T2t) = I(Detection spin time t)$$ $$v(t) = 1 - (1 - \frac{R}{A}) e^{-R} - \frac{1}{A}$$ (4.1) ### B. DITECTION PROPREHITY DENSITY FUNCTION We can derive the detection probability density function (pdf), f(t), by taking the first derivative of odf with respect to time t. $$f(t) = \frac{dF(t)}{dt}$$ $$= \left(K \frac{RD}{A^{1.5}}\right) \left(1 - \frac{TR^2}{A}\right) e^{-K \frac{RD}{A^{1.5}} t}$$ (4.2) If we integrate this function from 0 to∞ we have $$\int_{0}^{\infty} f(t) dt = \int_{0}^{\infty} \left(K \frac{RD}{A^{1.5}}\right) \left(1 - \frac{\Pi R^{2}}{A}\right) e^{-K \frac{RD}{A^{1.5}} t} dt$$ $$= \left(1 - \frac{\Pi R^{2}}{A}\right) \left| e^{-K \frac{RD}{A^{1.5}} t} \right|_{0}^{\infty}$$ $$= \left(1 - \frac{\Pi R^{2}}{A}\right) \neq 1$$ Since this integration is not equal to 1, the equation (4.2) doesn't represent a proper density function for t. ### C. EXPECTED FIRST DETECTION TIME Let $\vec{F}(t)$ denote the sumulative nondetection probability function (cndf). $$\overline{F}(t) = P(No \text{ detection } up \text{ to time } t) = p(T>t)$$ =1-P(T\left\text{t}) =1-F(t) $$\vec{F}(t) = \left(1 - \frac{\Pi R^2}{A}\right) e^{-\kappa \frac{RD}{A^{1.5}} t} \tag{4.3}$$ The following formula can be used to find the expected detection time E[T]. $$E[T] = \int_{0}^{\infty} \overline{F}(t) dt$$ $$E[T] = \int_{0}^{\infty} \left( \left| -\frac{\Omega R^{2}}{A} \right| \right) \sin \left( \frac{4.4}{4.4} \right)$$ $$= \frac{A^{1.5}}{KRD} \left( \left| -\frac{\Omega R^{2}}{A} \right| \right) \int_{0}^{\infty} \frac{KRD}{A^{1.5}} e^{-K\frac{RD}{A^{1.5}}t} dt$$ $$= \frac{A^{1.5}}{KRD} \left( 1 - \frac{\Omega R^{2}}{A} \right) \left| -e^{-K\frac{RD}{A^{1.5}}t} \right|$$ $$= \frac{A^{1.5}}{KRD} \left( 1 - \frac{\Omega R^{2}}{A} \right)$$ $$= \frac{A^{1.5}}{KRD} \left( 1 - \frac{\Omega R^{2}}{A} \right)$$ $$E[T] = \frac{A^{1.5}}{KRD} - \frac{A^{1.5}\Omega R}{KRD} - \frac{A^{1.5}\Omega R}{KRD}$$ (4.5) Expected first detection times are displayed for different diffusion constants (D), area sizes (A) and detection radiuses (R) in Figure 4.1. ### D. CONDITIONAL DETECTION PROBABILITY FUNCTIONS If we assume that there will be no detection at the beginning of the search period, we may derive the following conditional cdf. $F_o(t) = F(Detection up to time t/no det. at time 0)$ $$=P[T \leqslant t/T>0] = \frac{P[T>0,T \leqslant t]}{P[T>0]}$$ $$= \frac{P[0 \leqslant T \leqslant t]}{P[T>0]} \qquad (4.6)$$ If we substitute t=0 in equation (4.3), we get $$P(T>0) = \overline{F}(0) = (1 - \frac{\Omega R^2}{A})$$ (4.7) and $$P(0 < T \le t) = F(t) - P(t=0)$$ $$= \left[1 - \left(1 - \frac{\Pi R^2}{A}\right) e^{-\kappa \frac{RO}{A^{13}} t}\right] - \frac{\Pi R^2}{A} \tag{4.8}$$ By using (4.7) and (4.8) as a dominator and numerator in the equation (4.6), we have equation (4.6), we have $$F_0(t) = 1 - e^{-K} \frac{RD}{A^{1.5}} t$$ (4.9) This function (4.9) represents a cumulative probability function of an exponential distribution with parameter $\frac{RD}{A^{1.5}}$ . By using this fact, conditional expected first detection time $E[T_a]$ can be defined as follows: $$E[T_o] = E[T/No \ detection \ at time \ J] = \frac{A^{1.5}}{KRD}$$ (4.10) Also, we can write conditional detection probability density function $f_0$ (t) in the following form, $$f_o(t) = K \frac{RO}{A^{1.5}} e^{-K \frac{RO}{A^{1.5}}} t$$ (4.11) If we compare equations (4.5) and (4.10), we will observe that, $$\frac{A^{1,s}}{KRD} - \frac{A^{s} \Pi R}{KD} \leqslant \frac{A^{1,s}}{KRD}$$ so $E[T] \le E[T_0]$ . This inequality means that the conditional first detection time is greater than the unconditional first detection time. We can get this conclusion intuitively by thinking that we have an opportunity to detect the target at the beginning of the search period in the unconditional case. Therefore, for the unconditional case, we may expect an earlier first detection time than would be possible for the conditional case. Figure 4.1 Expected First Detection Time. Figure 4.2 Comparison of F(t) and $F_o(t)$ . ### V. THE RESULTS AND APPLICATIONS OF THE MODEL ### A. EXPECTED DETECTION TIME FOR RANDOM TOUR MODEL As we showed in Chapter II, a diffusion target gives an upper bound detection probability for the "equivalent" random tour model. Therefore, the diffusion model expected detection time, which is estimated by equation (4.5) should be a lower bound for random tour expected detection time. That is, for E[To]=Diffusion Model Expected Detection Time, and $F[T_R]$ =Fandom Tour Model Expected Detection Time, we have $$E[T_0] = \frac{A^{1.5}}{KRO} - \frac{A^{.5}\Omega R}{KO} \leq E[T_R]$$ ### B. ONE-DIMENSIONAL DIFFUSION MODEL In this thesis, two-dimensional diffusion motion was the basis for our model. The exponential type curves were used to estimate this model's outputs. In addition to this model, the one-dimensional diffusion model is simulated by computer program DIFSIM1. In this model, the target moves on a line segment L, according to diffusion constant D. The target's starting position is selected uniformly over this line segment L. Detection occurs whenever the target hits the designated end point. The target reflects off the other end point of line segment. The results of different simulation results are displayed in Figure 5.1. Exponential curves, which were obtained by using the least squares estimation method, were used to estimate the outputs of one-limensional diffusion model as we did for two-dimensional case. So we may expect that, for three or more dimensional diffusion models, we may use exponential type curves which are generated by a different set of parameters. For three-dimensional case, these parameters can be defined as follows: V=Volume of the cubical search space. R=Radius of the cookie-cutter detection sphere. D=Diffusion constant. T=Detection time. ### C. APPLICATIONS OF THE MODEL Our model can also be used to estimate the final detection probability of a system which includes more than one independent sensor. As an example, we may use the following scenario: We want to use n sonobouys in order to detect a diffusing target in an area A. Each sonobouy has a cookie\_cutter detection capability over a disk with radius 5; . Each sonobouy will be independently located on the center of a square subsearch area A; and operated for a time period t. If we make the following assumptions, we may use equation (3.9) to estimate the overall detection probability of this sonobouy pattern at the end of the search period t. $$R = \left(\sum_{i=1}^{n} R_{i}^{2}\right)^{1/2}$$ $$A = \sum_{i=1}^{n} A_{i}$$ where R is the effective detection radius. This formula also gives us an upper bound detection probability for a random tour model which moves in the same system. Figure 5.1 One-Dimensional Diffusion Model. ### APPENDIX A DIFSIM COMPUTER PROGRAM In order to give access to the logic used in building the simulation models DIFSIM and DIFSIM1, a complete program listing is included in this Appendix following the list of variables used in the simulation models. ### LIST OF VARIABLES REP = Number of replications. MAX =Detection period as a minute. R = Radius of detection disk in nautical miles. DIF =Diffusion constant D in square nautical miles per hour. SIDE=The length of the square search area side in nautical miles. AREA=Area size A in square nautical miles. INC =Time increment t for each discrete step in minutes. PROB=Probability of detection POSX=X component of target position. POSY=Y component of target position. DIST=The distance between the target location and the center of the detection lisk. IX1 = Seed number for uniform random number. Ix2 =Seed number for standard normal random variable. ``` THIS FOR A CONTINUE AND THE TARGET OF TA 0000 10 C C CHECK F75 C 300 35° 500 ``` ``` Control of the service servic 700 ``` 8)\ F00M\*\*(2X,F6.?;?x,F7.5,0X,F6.0,0X,F6.0,0X,F6.0) 75" CCNTINUS SNC C ### LIST OF REFERENCES - 1. Washburn, A. R., "Probability Density of a Moving Particle," Operation Research, v. 17, pp. 861-871, 1 September 1969. - Washburn, A. R., <u>Search and Detection</u> v. 4,p. 4-3. Ketron, 1981 - Janiel H. Wayner, Associates, Report 586.2, The Ornstein-Uhlenbeck Displacement Process as a Model for Target Motion, by B. Belkin, p. 4-7, T February 1978. - 4. Slaton, S. G., A <u>computer Program to Model Passive</u> <u>Accustic Antisubmarine Search Using Monte Carlo</u> <u>Simulation Tecniques Master's Thesis, Naval</u> Postgraduate School, California 1983. ### INITIAL DISTRIBUTION LIST | | | No. | Cories | |-----|-----------------------------------------------------------------------------------------------------|-----|--------| | 1. | Defense Technical Information Center<br>Cameron Station<br>Alexandria, Virginia 22314 | | 2 | | 2. | Library, Code 0142<br>Naval Postgraduate School<br>Monterey, California 93943 | | 2 | | 3. | Frofessor James N. Eagle, Code 55Er<br>Naval Postgraduate School<br>Monterey, California 93943 | | 1 | | 4. | Professor Bruno C. Shubert, Code 55Sy<br>Naval Postgraduate School<br>Monterey, California 93943 | | 1 | | 5. | Professor A. R. Washburn, Code 55<br>Naval Postgraduate School<br>Monterey, California 93943 | | 1 | | 6. | Frofessor Donald P. Gaver Jr., Code 55Gv<br>Naval Postgraduate School<br>Monterey, California 93943 | | 1 | | 7. | Deniz Kuyvetleri Komutanligi<br>Bakanliklar, Ankara /TURKEY | | 1 | | 8. | Deniz Harp Akademisi Komutanligi<br>Ayazaga, Istanbul /TURKEY | | 1 | | 9. | Deniz Harp Okulu Komutanligi<br>Heybeliada, istanbul/TURKEY | | 1 | | 10. | Boyazici Universitesi<br>Ycheylem Arastirmasi Bolumu<br>Istanbul/TURKEY | | 1 | | 11. | Crta Dogu TeknikUniversitesi<br>Yoneylem Arastirmasi Bolumu<br>Ankara/TURKEY | | 1 | | 12. | Mucahit Sislioglu<br>Barboros Mah. Mustafa Pehlivan sok.<br>No:42 Uskudar Istanbul/TURKEY | | 1 | ### END ### FILMED 5-85 DTIC